翻訳と辞書
Words near each other
・ Degenan language
・ Degener
・ Degener Buggenhagen
・ Degeneracy
・ Degeneracy (biology)
・ Degeneracy (graph theory)
・ Degeneracy (mathematics)
・ Degenerate (album)
・ Degenerate art
・ Degenerate Art (film)
・ Degenerate Art Ensemble
・ Degenerate Art Exhibition
・ Degenerate bilinear form
・ Degenerate conic
・ Degenerate dimension
Degenerate distribution
・ Degenerate energy levels
・ Degenerate matter
・ Degenerate music
・ Degenerate polygon
・ Degenerate semiconductor
・ Degenerated workers' state
・ Degenerates
・ Degenerates and Perverts
・ Degeneration (disambiguation)
・ Degeneration (medical)
・ Degeneration (Nordau)
・ Degeneration Street
・ Degeneration theory
・ Degenerative chain transfer


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Degenerate distribution : ウィキペディア英語版
Degenerate distribution


In mathematics, a degenerate distribution or deterministic distribution is the probability distribution of a random variable which only takes a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.
The degenerate distribution is localized at a point ''k''0 on the real line. The probability mass function equals 1 at this point and 0 elsewhere.
The distribution can be viewed as the limiting case of a continuous distribution whose variance goes to 0 causing the probability density function to be a delta function at ''k''0, with infinite height there but area equal to 1.
The cumulative distribution function of the degenerate distribution is:
F(k;k_0)=\left\k\ge k_0 \\ 0, & \mboxk
==Constant random variable==
In probability theory, a constant random variable is a discrete random variable that takes a constant value, regardless of any event that occurs. This is technically different from an almost surely constant random variable, which may take other values, but only on events with probability zero. Constant and almost surely constant random variables provide a way to deal with constant values in a probabilistic framework.
Let  ''X'': Ω → R  be a random variable defined on a probability space  (Ω, ''P''). Then  ''X''  is an ''almost surely constant random variable'' if there exists c \in \mathbb such that
:\Pr(X = c) = 1,
and is furthermore a ''constant random variable'' if
:X(\omega) = c, \quad \forall\omega \in \Omega.
Note that a constant random variable is almost surely constant, but not necessarily ''vice versa'', since if  ''X''  is almost surely constant then there may exist  γ ∈ Ω  such that  ''X''(γ) ≠ ''c''  (but then necessarily Pr() = 0, in fact Pr(X ≠ c) = 0).
For practical purposes, the distinction between  ''X''  being constant or almost surely constant is unimportant, since the cumulative distribution function  ''F''(''x'')  of  ''X''  does not depend on whether  ''X''  is constant or 'merely' almost surely constant. In this case,
:F(x) = \begin1, &x \geq c,\\0, &x < c.\end
The function  ''F''(''x'')  is a step function; in particular it is a translation of the Heaviside step function.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Degenerate distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.